Hierarchical nanostructures of diblock copolymer thin films directed by a saw-toothed substrate.

نویسندگان

  • Mengjie Peng
  • Shiying Ma
  • Jinglei Hu
  • Rong Wang
چکیده

An extensive and systematic calculation was performed to explore hierarchical cylindrical structures and the order-to-order transitions of AB diblock copolymers (f(A) = 0.3) on a saw-toothed substrate using self-consistent mean-field theory. We obtained fifteen relatively simple morphologies, including the existing morphologies observed experimentally and from simulations, and five more complicated structures, by varying the lateral periodicity of the substrate, the film thickness of diblock copolymers, the interaction between the A-block and the substrate and the tilt angles (or the shape) of the substrate. These structures show that the orientation and number of layers of cylinders can be tailored. Even lamellae and spherical microdomains were observed. Most interestingly, hierarchical structures are also observed, such as the morphology of C(ab)(//) within the upper cylinder perpendicular to the bottom cylinder, SC(b)(//) morphology that the upper is a cylinder but the bottom is a sphere. In addition, we discussed these complex hierarchical structures in detail and have analyzed the order-to-order transitions between the cylindrical morphologies with distinct orientations and layers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase-field modeling of the formation of lamellar nanostructures in diblock copolymer thin films under inplanar electric fields.

Recent experiments show that external inplanar electric field can be employed to guide the molecular self-assembly in diblock copolymer (BCP) thin films to form lamellar nanostructures with potential applications in nanotechnology. We study this self-assembly process through a detailed coarse-grained phase-separation modeling. During the process, the free energy of the BCP films is modeled as t...

متن کامل

Functional Nanostructures Based On Polymeric Templates

Project Objectives. The molecular self-assembly of diblock copolymers provides a simple, robust route to create well-defined arrays of functional nanostructures. In recent work, funded by the NSF Partnership in Nanotechnology: Functional Nanostructures program, we developed techniques by which diblock copolymer thin-films can be transformed into robust nanoporous array templates, and then with ...

متن کامل

Dewetting behavior of a block copolymer/homopolymer thin film on an immiscible homopolymer substrate.

Numerous previous studies have established that the addition of a microphase-ordered AB diblock copolymer to a thin homopolymer A (hA) film can slow, if not altogether prevent, film rupture and subsequent film dewetting on a hard substrate such as silica. However, only a few reports have examined comparable phenomena when the hA/AB blend resides on a soft B-selective surface, such as homopolyme...

متن کامل

Directed self-assembly of cylinder-forming diblock copolymers on sparse chemical patterns.

Using both theory and experiment, we investigate the possibility of creating perfectly ordered block copolymer nanostructures on sparsely patterned substrates. Our study focuses on scrutinizing the appropriate pattern conditions to avoid undesired morphologies or defects when depositing cylinder-forming AB diblock copolymer thin films on the substrates which are mostly neutral with periodic str...

متن کامل

Hierarchical Directed Self-Assembly of Diblock Copolymers for Modified Pattern Symmetry

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1 wileyonlinelibrary.com Application area of BCP self-assembled thin films is highly restricted by the limited degree of freedom in pattern symmetry, typically including hexagonal close-packed cylinders/spheres and bilateral symmetric lamellae/cylinder arrays. Sparse density modulated nanopatterns and modified pattern symmetries are demanded for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 11 33  شماره 

صفحات  -

تاریخ انتشار 2015